The source files for all examples can be found in /examples.
Relaxed Two-Way Partitioning Problem
We consider the (nonconvex) two-way partitioning problem from Boyd and Vandenberghe (2004), p.219 [1]:
\[\begin{array}{ll} \text{minimize} & x^\top W x \\ \text{subject to} & x_i^2 = 1, \quad i=1,\dots, n, \end{array}\]
with $x \in \mathbf{R}^n$ and $W \in \mathbf{S}^n$. The problem can be interpreted as finding a partition of the points $i = 1,\dots, n$ into two sets, where the cost of two points in the same set is $W_{ij}$ and $-W_{ij}$ otherwise. Brute forcing the solution $x^*$ takes $2^n$ attempts and becomes quickly intractable, e.g. for $n \geq 30$. However, a lower-bound for this problem can be computed by solving the convex dual of the problem:
\[\begin{array}{ll} \text{maximize} & -\sum_i \nu \\ \text{subject to} & W + \text{diag}(\nu) \in \mathbf{S}_+^n. \end{array}\]
Solving this problem with optimal objective $d^*$ yields a lower bound as least as good as a lower bound based on the minimum eigenvalue $d^* \geq \lambda_{\text{min}}(W)$. Let's set up the problem for $n = 20$ and with a specially structured (banded) $W$:
using LinearAlgebra, Random, COSMO, JuMP, IterTools
rng = Random.MersenneTwister(212313);
n = 20;
W = diagm(0 => randn(rng, n));
W += diagm(1 => randn(rng, n-1));
W = Symmetric(W)
20×20 LinearAlgebra.Symmetric{Float64, Matrix{Float64}}:
1.6562 1.03129 0.0 … 0.0 0.0 0.0
1.03129 1.38424 0.0970901 0.0 0.0 0.0
0.0 0.0970901 0.648929 0.0 0.0 0.0
0.0 0.0 -0.210802 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 … 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 … 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 … 0.0 0.0 0.0
0.0 0.0 0.0 0.500723 0.0 0.0
0.0 0.0 0.0 -0.951779 0.518206 0.0
0.0 0.0 0.0 0.518206 -0.136439 -0.175429
0.0 0.0 0.0 0.0 -0.175429 0.781579
As you can see, the matrix $W$ imposes a structure on the LMI-constraint. Accordingly, COSMO will be able to use chordal decomposition to decompose the LMI constraint into multiple smaller constraints. This can make a significant difference in the performance of the algorithm for large $n$.
model = JuMP.Model(COSMO.Optimizer);
@variable(model, ν[1:n]);
@objective(model, Max, -ones(n)' * ν )
@constraint(model, Symmetric(W + diagm(ν) ) in JuMP.PSDCone());
JuMP.optimize!(model)
------------------------------------------------------------------
COSMO v0.8.9 - A Quadratic Objective Conic Solver
Michael Garstka
University of Oxford, 2017 - 2022
------------------------------------------------------------------
Problem: x ∈ R^{38},
constraints: A ∈ R^{57x38} (56 nnz),
matrix size to factor: 95x95,
Floating-point precision: Float64
Sets: PsdConeTriangle of dim: 3 (2x2)
PsdConeTriangle of dim: 3 (2x2)
PsdConeTriangle of dim: 3 (2x2)
PsdConeTriangle of dim: 3 (2x2)
PsdConeTriangle of dim: 3 (2x2)
... and 14 more
Decomp: Num of original PSD cones: 1
Num decomposable PSD cones: 1
Num PSD cones after decomposition: 19
Merge Strategy: CliqueGraphMerge
Settings: ϵ_abs = 1.0e-05, ϵ_rel = 1.0e-05,
ϵ_prim_inf = 1.0e-04, ϵ_dual_inf = 1.0e-04,
ρ = 0.1, σ = 1e-06, α = 1.6,
max_iter = 5000,
scaling iter = 10 (on),
check termination every 25 iter,
check infeasibility every 40 iter,
KKT system solver: QDLDL
Acc: Anderson Type2{QRDecomp},
Memory size = 15, RestartedMemory,
Safeguarded: true, tol: 2.0
Setup Time: 0.1ms
Iter: Objective: Primal Res: Dual Res: Rho:
1 -6.1146e+02 1.7072e+01 5.9998e-01 1.0000e-01
25 2.3958e+01 2.9812e-01 1.1267e-09 1.0000e-01
50 2.5146e+01 2.0059e-01 3.3875e-08 1.0000e-01
75 2.5430e+01 1.3731e-01 1.6859e-10 1.0000e-01
100 4.6635e+01 4.1935e-04 1.0000e+00 2.0235e+03
125 2.5430e+01 1.3731e-01 4.9535e-06 7.7002e-02
150 2.5430e+01 1.3731e-01 4.1990e-12 7.7002e-02
175 2.5749e+01 8.8781e-04 1.0000e+00 1.5929e+03
200 2.5697e+01 4.2068e-09 1.0000e+00 5.7766e-02
225 2.5430e+01 1.3731e-01 1.6800e-11 5.7766e-02
250 2.5773e+01 1.1828e-03 1.0000e+00 1.1956e+03
275 2.5933e+01 9.3413e-09 1.0000e+00 1.1956e+03
300 2.5430e+01 1.3731e-01 5.7127e-11 1.8017e-02
325 2.5430e+01 1.3731e-01 3.3307e-16 1.8017e-02
350 2.7406e+01 1.3745e-05 1.0000e+00 3.7327e+02
375 2.5429e+01 1.3731e-01 5.0149e-07 6.0167e-02
400 2.5430e+01 1.3731e-01 2.0717e+04 1.2465e+03
425 3.6045e+01 6.8600e-06 1.0000e+00 1.2465e+03
450 2.5430e+01 1.3731e-01 2.7724e-07 3.0784e-02
475 2.5430e+01 1.3731e-01 4.7296e-14 3.0784e-02
500 3.6956e+01 1.7243e-04 1.0000e+00 6.3774e+02
525 2.5431e+01 1.3731e-01 1.0869e-06 2.1186e-02
550 2.5430e+01 1.3731e-01 3.4306e-14 2.1186e-02
575 2.5697e+01 1.1600e-03 1.0000e+00 4.3890e+02
600 2.5624e+01 1.8021e-10 4.7280e-10 4.3890e+02
------------------------------------------------------------------
>>> Results
Status: Solved
Iterations: 677 (incl. 77 safeguarding iter)
Optimal objective: 25.62
Runtime: 0.116s (115.55ms)
Looking at the solver output you can see how the PSD constraint was decomposed into 19 PSD constraints. Let's look at the lower bound:
JuMP.objective_value(model)
-25.623709241260592
As $n$ is small, we can verify our result by finding the optimal solution by trying out all possible combinations:
function brute_force_optimisation(W, n)
opt_obj = Inf
opt_x = Inf * ones(n)
for xt in Iterators.product([[1.; -1.] for k = 1:n]...)
x = [i for i in xt]
obj_val = x' * W * x
if obj_val < opt_obj
opt_obj = obj_val
opt_x = x
end
end
return opt_obj, opt_x
end
opt_obj, opt_x = brute_force_optimisation(W, n)
(-25.623709242765823, [-1.0, 1.0, -1.0, -1.0, -1.0, 1.0, -1.0, 1.0, 1.0, 1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, 1.0, -1.0, 1.0, 1.0])
References
[1] Boyd and Vandenberghe - Convex Optimization, Cambridge University Press (2004)
This page was generated using Literate.jl.